
AD AObO 850 HOPEYWELL INC NII*CAPOI.IS MINN SrSTENS AIC RESEARCH —— ETC pm
PROTOTYPE AUTOMATIC TARGET SCR((N(R.(tJ~SEP 78 0 £ SOLAIC. P N NARENORA. R C FITCH OAA K7O—77—C —02118

UNCLASSIFZED 71$RCS*—5 NI.

UD
_

__ P1 _ U-
_ _

iii rr”flU!__

_ _

PROTOTYPE
~ AUTOMATIC TARGET SCREENER

By
,~

D,E. Soland i w’~ ~~~P.M. Narendra
~R.C. Fitch L i ,

DY . Serrey n

- T.G. kopet

Honeywell
SYSTEMS & RESEARCH CENTER D D C~2600 RIDGWAY PARK WAY i~F~

[L
~I ~

1r ?f ~Uil(?Jj~.I ~~~ MINNEAP OLIS, MINNESOTA 55413 Y NOV 6 ~~
~

f

September 1, 1911 111

Quarterly Progress Report 1 April —30 June 1918

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Prepared for

L U S. Arm y Mobilit y E!ulpmsut
Research aid Developm ent Command ,

Night Yis ieu aid Electr o iptics Laborator y

Fort Belvoir , VIrginia 22010

:fl ~
--

T

,1

r

“The views. opinions and /or findings contained in this
report are those of the authors and should not be construed
as an official Department of the Army position, policy, or
decision, unless so designated by other documentations. ”

k

_ _ _ -
_ _ _ _ _ _ _ _

UNC LASSIFI ED
SECURITY CLASSI FICATION OF THI S PAGE (WHEN DATA ENTERED)

__

REPORT DOCUMENTATION PAGE READ INSTRUCT)ONS
BEFORE COMPL ETING F O R M

3 REC IPIENT’S CATALOG NUMBERI REPORT NUMBER

12

3UD~ ~ ~~~~~ I.J.I~I~~ p. ~~~~~~ r~~ ’•u ~~~~~~~~~~~~

~~~~ )
~~~~~terlY P~ogress 1(e

_____________________________ ___________
78SR~~~~~~

~~~

7

~~~~~ JR ~~~~~~~~~~~
PROTOTYPE AUTOMATIC TARGET SCREENER’ 1 A r ~~~~ Jun e *78

I~~ t... RMT .~~.1~lANT NUMBER(S).~— ~ *u~I4en
ti’t” i) .E . j~~land~, D.V./lerreY ’7

P. M./~ arendr~~ J. ~T.Ô./Kopet / ~~ DAAK7 . -77-C-m~~ J‘j~~~ k’~.tCi 1
9.~~~ RI%IIIIIN O OJANIZAT I
-
~ 7 ueyw~ll ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10. PROG RAM ELEMENT PRO~~~~!)~ AS$ AREA
~~~~~~~ Qft~~~~NITN~~~~~~~~, (

~~2 ’OO Ridgway Parkway 
~~~~ 1E2637~~ D9~J±~~~10CJ

Minneapolis , Minnesot a 55413 __________________________________
11. CONTROLLI NG OFFICE NAME/ADDRESS ~~ ‘~~~~~ 1*r afrorT puTt

Night Vision and Electro-Optics Laboratory(~~~~~
Sep _ -

I~.
Fort Belvoir, Virginia 22060 108

1T MONITQRING AGENCY NAME/ADDRESS (IF DIFFERENT FROM CONT. OFF .) 15. SECURITY CLASSIFICATION (OF THIS REPORT)

Unclassified
15a. DECLASSI FICA TION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (OF THIS REPORT)

Approved for public re~.ease , distribution unlimited.

1.’ . DISTRIBUTION STATEMENT (OF THE A BSTRACT ENTERED IN BLOCK 20 , IF DIFFERENT FROM REPORT)

IS. SUPPLEMENTARY NOTES

1t. KEY WORDS CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY DV BLOCK NUMBER)

Infrared Target recognition Image enhancement
FUR Pattern recognition
Target cueing Image processing
Target screening Real-time
A BSTRACT (CONflNIJE ON REVERSE 1101 IF NECESSARY AND IOENTIP’V IV II OCK NUMBER)

This report is the third quarterly progress report for contract DAAK7O-77-C-0248 ,
I Prototype Automatic Target Screener. The objective of the effort is to design an

automatic target screener to be used with thermal imaging systems employing common

t • module components.
Pt
C

zr

~~~~~~~ 
UNCLASSIFIEDDO FORM 1473 EDITION O~ I NOV Il lS OBSOLETE

UCURfl V CLASSIfICATION OF Iwli P*Gt (WHtN BA

_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _
- —-~~~~~~~-~~ —~~~~ 

f4~
_ - . ‘ -..• .

~~~~
. ,

- - -~

SECU RITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

I
__

EECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTEI~I III

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ________

I, i I -\~ ~~~



CONT ENTS

Section Page

INT R ODUCTION AND SUMMARY 1

CLASSIFIER OPTIMIZATION 3

Clutter Rejection Classifier 4

Computational Considerations 10

Recognition ClassifIer 11

The kNN Classifier 11

Feature Subset Selection 14

Optimum Moment Subset Selection 14

Choice of Distance Measure 16

Fast NN Computation 19

Interframe Analysis 26

Decision Smoothing by Bayes ’ Theroern 27

Priority Target Mode 29

Ill SOFTWARE DESIGN 31

CPU 1 Software 32

Software Organization 34

Software Modules 35

CPU 2 Software 
. 

46

Operational Software 46

Diagnostic Software 49

S

‘:1

- ~~~~~~~ 

5~ I



CONTENTS (concluded)

Section Page

IV HARDWARE DESIGN 50

Edge Signal 50

Sync and Timing 54

V SYSTEM HARDWARE SPECIFICATION FOR PAT S 60

Video Input 60

PATS Hardware 61

Autothreshold Function 63

Interval Generation 73

First Level Features 77

Intensity Data 78

Computer System 1 86

CPU 2 90

Symbol Generation 92

System Timing 94

Mechanical 96

Power 96

VI PLANS FOR THE NEXT REPORT ING PERIOD 100 4

iv
t I

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I . ~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~

-

~~~~~~~


LIST OF ILLUSTRATIONS

Figure Page

la Plot of Edge Features for Clutter Objects 7

lb Plot of Edge Features for Targets 8

2 Clutter Classifier Structur e 9

3 Hierarchical Tree Defining the Grouping of 256
Training Samples for the Fast NN Algorithm 23

4 Ball overlaps Bounds and Ball within Bounds Tests 24

5 Bin Classification Software 33

6 Software Organization for CPU 1 (Bin generation
finds all bins before any classification is done.) 34

7 Alternate Software Organization for CPU 1 (Bin
generation finds a bin and immediately passes it
to bin classification.) 35

8 Interval Data Format 36

9 CPU 1 Software Organization 39
I

10 CPU Software 47

11 Edge and Edge Threshold Hardware Implementation
Block Diagram 51

12 Absolute Value Circuit 53

13 Sync and Timing 55

V ~~~
- . - ,.. -

- 4

- a

w-

LIST OF ILLUSTRATIONS (continued)

Figure Page

14 Vertical Timing 57

15 Horizontal Scan Line Timing 58

16 Composite Frame Sync (shown for 525) 59

17 PATS Functional Units 62

18 Autothreshold Structure 64

19 Edge Signal Derivation 66

20 Adaptive Edge Threshold 67

21 Adaptive Bright Threshold 69

22 Background Estimator 70

23 Background Filter and Switch Rationale 71

24 Relative Scan Line Timing for Autothreshold 72

25 Interval Generation 74

26 Start/Stop Criteria 75

27 First Level Features 79

28 Background Feature 81

29 Intensity Feature 82

30 Video Field Memory Bit Plane 84

31 Computer System 1 87

vi

t

r
_ _

‘~~~ % ‘ T , ~~ ,.~~ .~~~~

LIST OF ILLUSTRATIONS (concluded)

Figure Page

32 Memory 1 Configuration/Interface 88

33 CPU 2 Configuration 91

34 Symbol Generation 93

35 System Synchronizing and Timing 95

36 PATS Physical Configuration 97

37 PATS Physical Layout 98

38 Card Outline 99

vii

*

_ _ _ _
_ _ _

I

~~~~~~~~~ ~~~~~~ 
- 

~~~~~~~~~~~~ ~~~~~ 
-—‘

~~

LIST OF TABLES

Table Page

1 Comparison of Moment Feature Types
(Two classes, kNN classifier) 15

2 Results of Feature Subset Selection 17

3 Performance of the Best Four Moment Set
(kNN classifier) 18

4 Comparison of the Eudlidean and City Block
Metrics for the kNN Classifier 20

5 Bin Format 37

6 Edge and Edge Threshold Derivation 68

7 Adaptive Bright Derivation 71

8 Interval Generation 76

9 First Level Features 80

10 Intensity Data- -Background . 83

11 Intensity Data--A/D and Sum of Intensity 85

12 Intensity Data- - Memory 2 85

13 CPU 1 89

14 Symbol Generation 92

15 Sync and Timing 94

• 1

viii

S . ~.# . P

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

- -



SECTION 1

INT R ODUCTION AND SUMMARY

This is the third quarterly technical progress report for contract

number DAAK7 O-77-C-0248 , Prototype Automatic Target Screener

(PATS). The first two quarterly reports documented the Phase I

design study . This report covers the first part of Phase II. Phase U

is a seventeen-month effort which includes detailed system ‘~~sign,

fabrication, integration, and evaluation and testing. The period covered

by this report is 1 April to 30 June 1978.

The program objective is to produce a design for an automatic target

screener. The screener will reduce the task loading on the thermal

imager operator by detecting and recognizing a limited set of high

priority targets at ranges comparable to or greater than those for an

unassisted observer. A second objective is to provide enhancement

of the video presentation to the operator. The image enhancement

includes (1) automatic gain/brightness control to relieve the operator

of the necessity to continually adjust the display gain and brightness

controls , and (2) DC restoration to eliminate artifacts resulting from

AC coupling of the infrared (IR ) detectors.

The image enhancement portion of PATS will consist of circuitry to

operate on the Common Module FLIR (MODFLIR ) video output signal.

The circuitry will provide global gain and bias control in the form of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _

feedback to the MODFLIR to maintain the signal within the dynamic

range of the electro-optical multiplexer

Image enhancement will also include local area gain and brightness

control to enhance local variations of contrast and compress the over-

all scene dynamic range to match that of the display . This circuitry

has been completed and examples of its performance on videotapc~d

thermal image data were included , along with the circuit description , in

the first quarterly report.

The third Image enhancement circuit is for DC restoration to eliminate

the streaking associated with loss of line-to-line correlation on the

displayed image because of the AC coupling of the detector channels .

This report consists of five sections . Section II describes the final

results of the classifier design and optimization study . Specifically,

we have improved the clutter rejection classifier by adding a new

feature and reducing the total number of features. Also, we have re-

placed the cascade threshold linear classifier by a k-nearest neighbor

classifier for new scenarios, different sensors, etc. while somewhat

increasing the computations required for recognition. Final recogni-

tion accuracy obtained on the design data set was 78.4 percent.

Section III presents the results of the software design effort. This in~ludes

detailed specifications for each of the software functions required. Sections

IV and V Include descriptions of the detailed hardware design effort to date

at the function and systems level, respectively. Section VI describes the

planned effort for the next three-month reporting period.

2

- — .__ ____,____•__ - -—- - . - - - - -..—-— - --—— — .-. — - —--—I_.-—-———-- —-- -- --- —w-, ~~~~~~~~~~~~~~
-

- - _ _ _ _ _ _

SECTION U

CLASSIFIER OPTIMIZATION

In the last quarterly progress report we presented the results of a prelim-

inary two-stage classifier for clutte r screening and targe t classification.

Both stages used cascaded threshold classifiers, which were comprised

of a set of linear discriminants designed with the training samples from

the target classes and representative clutter. During this pe riod, we

optimized the clutter rejection and the target recognition classifiers in

the following ways:

1. We improved the clutter rejection classifier by adding a new

featu re based on edge and eliminating afl but the most essential

remaining features. We made this cascaded threshold classifier

structurally simple in order to make it more robust when used

with independent data sets.

2. We implemented a k-nearest neighbor (kNN) classifier for the

recognition stage . This replaces the cascaded threshold linear

classifier described In the previous report.

The kNN classifier for recognition makes It easy to “train ” the classifier

with new data because the training process consists of merely storing the

prototypes. This feature is Importan t when new target classes are added,

for training in situ, and for varying scenarios. The main drawbacks of

4

3

-
- — --

~~~~~
-——-- —- - . - —— .- - - - - - - - ,r— ~

-
~

---- — - ‘, . - I - --—-—- ----——— -—--—.-.



this type of classifier have been that it requ i res expensive distance

calculations and storage of a large number of training samples. Both

drawbacks now appear surmountable with the CPU l’s fast multiplier!

adder.

In this section we present the results of the two new classifiers and compare

their performance with the preliminary classifiers discussed in the previou s

report. Implementation of these classifiers in CPU 1 software in PATS is

also discussed.

CLUTTER REJECTION CLASSIFIER

The preliminary clutter rejection classifier, previously described, used

14 features in all and had an involved hierarchical structure of cascaded

thresholds five stages deep. We felt that this classifier could be simpli-

fied by pruning the nonessential and correlated features and reducing the

number of classification steps.

Considering the features one at a time , we examined the scatter of targets

and nontargets. We discarded fe atures which showed no clustering of targets

and nontargets. Several of the features were highly correlated, so we

discarded features that were correlated with the chosen set. This reduced

the fe atu re set to three features:

1. Average target intensity

2. Average target contrast

3. Total area

4

H
- - -

~- 
,-‘_~~ --- -——-- - ~~~~~~~~~~~~ —



In addition , a clutter prescreenin g stage, which consists of straight thresh-

olds on the target area and the brigh t count , was implemented to throw
*out any pathological clutter. This rejects all targets less than 43 pixels in

area and possessing a bright count of less than 750. The bright count is

the number of thresholded (hot/cold) pixels in the object normalized with

respect to the area of the extracted objects. This fraction is multiplied

by a factor of 1000. A bright count of 750, therefore , implies that 75

percent of the extracted object was either below or above the cold or hot

thresholds, respectively. Therefore, small clusters of isolated th resholded

points are rejected by this prescreening stage .

To strengthen the clutter rejection classifier further , we defined two new

features based on edge s (not the edge count fe atu re de scribed previously, -

which is of little value). These are based on the fact that targets

usually possess edges on both sides whereas most clutter objects extracted

have a significant edge on one side but none on the other. These features

are called the left and right edge featu res, respectively, and are defined

as follows :

Right (Left ) edge feature = Number of intervals in the object for

which an edge exists at the right (left)

of the interval /number of intervals.

A set of 40 frames was reprocessed and the above new fe atures were

computed on each extracted object and appended to the previously extracted

fe atureB. There were 865 objects present (186 targets and 679 clutter

objects).

pixel corresponds appro~~mately to one IFOV for this sensor .

_ _ _  _ _

_ _ _-i



Figures la and lb show the scatter plot of the two new features for targets

and clutter objects, re spectively. From this we see that thre sholds of

approximately 600 on each axis succeed in removing a substantial amount

of clutter with minimal loss of targets. However, a large number of

clutter objects are in the vicinity of the target samples. Nevertheless,

these two features have proved to be good independent clutter rejectors.

Therefore, our refined clutter rejection scheme includes these two

features in addition to the three features mentioned before.

A linear discriminant classifier was attempted using all six features and one

discrixninant to separate the two classes (targets, clutter) . The results

were unsatisfactory, implying that the target and clutte r classes were

not unirnodal Gaussian, which is a requirement of the linear discriminant

classifiers. Therefore , a hierarchical classification scheme was developed

using these five features. This classifier retains the simplicity but has a

bette r clutter rejection performance.

Figure 2 shows the structure of the optimized clutter classifier. It con-

sists of a sequence of cascaded thresholds on the six fe atures: bright

count, left and right edge features, average target intensity, average target

contrast, and target area. No linear discriminant computations (involving

multiplies) are used. This is desirable in a real-time clutter screening

classifier designed to handle a large number of objects. Referring to

Figures la and lb we see that :

• The easy clutter classification stage removes 378 out of 679

clutter objects. This stage uses the bright count and the total

area.

6



1500

THR ESHOLD

1250 . o 0 a
0 0 

0 0 0

1000 0 0  000 0 00~~~0 (1 0
0 o l O

0 

0 0 -: 
~~~~ 

0

I— THRESHOLD 0 0 0 0

~~~~~ O o ~~~-°O %
500 - 0. 0 

0
o 8 0 0

0 0
0 0- 0

0- 0 0 00
250 - 0 0. 0 o 0 0 0

o 0 0
C 0 

~ 0

0 1 ,  ~~ ~~ G 0* &~~ 0 *
• sse 1000 1500

- 250 750 1250

x10

RIGHT EDGE FEATURE

Figure la. Plot of Edge Features for Clutter Objects
(V -

-
. ‘.

7

4 
~~~ _j -~ 

4%
~~~~~~~~~~~ .~

. ~



1500

1250

4 4

1000 . • ,  e, •

4 
4

4
750 . ~

- 

~

501 -

+

250 -

O -. .  I I

• 500 3000 1500
250 750 . 1250

x~.

RIGHT EDGE FEATURE

Figure lb. Plot of Edge Features for Targets

.4

8



1 C

166 679

~~1I I CLIJTTEP
I I PRE~ iP FEN [ R

PREA

I I
I I
I ~~ CLUTTER
I I

BR IGHT T C

COUNT 8 378
I II I
L -~

I C

17 6 30 1

_____________________ 
I L EFT EDGE

RIG HT [;~~[ RIGHT EDGE
17 17

~~~~~~r~~~~~~~~~~oLo ~~~~~~~ OT ~~~~~~~ OLD ~~~~~~~~ T ~~~~~~~~OLD 

~~~~~~ 2 

~~~~~~~~~~

T c CLASSI FIER

- T [I S 1 35
FINAL

C 66 613 SCORE

Figure 2. Clutter Classifier Structure

9

- - —

~~
-
~i~:i~ ~~~~~~~~~~~~~~~~~~~~~

—

• The right and left edge fe atures partition the data into fou r

groups, each with a diffe rent cascaded threshold classifier.

Each of these four groups is further subdivided into two regions

(hot/cold) resulting in a total of eight regions~

• Each of the eight regions has a cascaded threshold classifier

designed for that region. These eight classifiers use th resh -

holds on average intensity, average contrast , and object area.

• The incidence of cold targets is rather low in the data set.

Hence, the classifiers for the cold regions will be retrained

when more cold targets are processed with the PATS

processor.

• The classifier structure is made deliberately simple w ith simple

thresholds on the features. This enables effective retraining of

the classifier when the sensors are changed.

Computat ional Cons iderat ions

Since the clutter classifier has to process a much larger number of

extracted objects than the recognition classifier, it must be efficient. The

simplicity of the threshold helps here. An object being classified through

the clutter classifier requires merely eight comparisons. Thi.s is extremely

efficient in terms of computational load on the processor.

10

I ECOGNITION CLASSIFIER

In the previous report’ we presented a preliminary recognition classifier

for two target classes (tanks and APCs) . This classifie r used cascade d

linear discriminants. Because the k-nearest neighbor classifier appears

to be more attractive for the PATS recognition application , we tested the

approach with training data acquired from the previously processed

images. In this subsection we describe the kNN classifier approach

employed, the feature selection procedure to select the “best” subset of

featu res, and the results of classification with the training data. Irnple-

mentation considerations include a description of a fast algorithm to

compute the k-nearest neighbors.

The kNN Classifier

Training samp les (feature vectors for objects whose real category is

known) and their categories are stored. A new sample vector is classified

as follows. Its distances to all the stored training samples are found, and

its k-nearest ne ighbors among the training samples are determined. The

new sample is assigned to the class to which the majority of its k neighbors

belong . When the number of classes is two, k is usually chosen odd to

avoid ties.

1 Duane Soland, et al. , “PAT S Quarterly Progress Report , ” Contract
No. DAAK7O-77-C-0248. Honeywell Systems and Research Center ,
Minneapolis, Minnesota, June 15, 1978.

_ _ _
_ _ T :~~~T~ ~~ _ _

The advantages of the kNN classifier are as follows:

• The classifier is easy to train: we just store the training samples.

When new target classes/scenarios are to be accommodated, we

simply add new training samples representing the new scenario

to the training set.

• The classifier is nonparametric: the distributions for each class

need not be linearly separable. In fact , they can possess any

arbitrary shape and can be multimodal. This is attractive

because we can make the ground truth (true classification) aspect

independent in the training process. In fact , we only have to

specify the target class (tank, APC, etc.). Of course we still

have to ensure that all aspects are adequately represented in

the training data.

The disadvantages of the kNN approach are as follows:

• Because the process is nonparametric, a large number of training

samples is necessary. This number grows very quickly with the

number of features being used.

• Storage of training samples requires N x (n + 1) words of memory

to store N vectors of dimension n, along with the ground truth .

• Computation of the neare st neighbors is expens ive . The brute-

force approach requires the calculation of all N distances to

classify the new sample. This requ i res N x n multiply-adds /
classification.

12

_ _ _ _ _ - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -- -- --~~~~~~~~ .-

I

The drawbacks can be at least partially overcome by:

1. Feature selection to limit the number of features to the minimum

subset that yields acceptable recognition.

2. Using clever techniques to find the nearest neighbors of a new

sample without actually calculating all N distances.

3. The use of high-speed memory and the 115 nsec multiplier/add

in the PATS processor.

We developed kNN classifier software on the SDS9300 computer to evaluate

the kNN approach . Because of the emphasis on analysis, the software was

designed to be interactive and flexible. For example, the program takes

as input the specific features to be used, the parameter k and the

training vector tape that contains all the features on all the objects

extracted with the ground truth. The program outputs confusion matrices--

a summary of how samples from each class were assigned by the k-nearest

neighbor vote . When used to measure performances on the training data,

the classifier program does not count the sample being tested as one of its

own neighbors. If it were otherwise, with k = 1, we would get 100 percent

correct classification performance on the training data! In each run made,

the program gives the classification performance with all values of k from

1 to 10. In this way, we monitor the effect of k on the performance and

select the best k for a given feature set.

_ _ _ _ _ ~~ :. :

Featu re Subset Selection

The objective of this effort was to find the minimum number of features

from the three moment fe ature sets, each with six usable moments (i~~~
IP1 20 1

~l2~ ‘~21
’ ~1 Q3~ I~3o). (IL~~ is used for normalization, and I’02

and

are perfectly negatively correlated after normalization. Hence and

are not used.) In these experiments 227 objects (143 tanks and 84 APCs)

were used for data.

Which Moment Type?--Ou r first featu re selection step was to choose one

family of moments from the intens ity- , silhouette -, and boundary-derived

moments. Accordingly, we tested the kNN classifier with the six moments

from each class. In each case , all values of k = 1, ..., 10 were tried ,

and the results with the best value are presented. Table 1 summarizes

these results. The percentage error in Table 1 was computed as the

percent fraction of the total misclassified samples to the total number of

samples. We note that the three moment types are not markedly diffe rent

in performance from one another. The boundary moments yielded the

lowest error rate (21. 6 percent), but we chose the intensity moments (at

22. 5 percent error rate). Intensity moments tend to be less susceptible

to noi se in segmentation than boundary moments because the boundaries

are less heavily weighted.

Optimum Moment Subset Selection

There are six usable intensity moments: ‘~ll’ ~12’
111 219 IhI 209 ~30’ ~

1Q3~
Our next step was to find the minimal subset which gave almost the same

performance as all six moments. We sought to reduce the number of

14

~

: - - - - -~~~~~~~~~~~~~~~~~

TABLE 1. COMPARISON OF MOMENT FEATURE TYPES
(Two classes, kNN classifier)

Moment Type Opt imum Percent

~~~~ ~‘12 ’ ~‘20’ 1 211 ‘03’ ~‘30~ 
k Error

Intensity 8 22. 5

Boundary 7 21.6

Silhouette 7 24.2

fe atures because (1) the smaller the dimensiona.lity of the feature space,

the fewer the training samples we will need for robust classification, (2)

the computation requirements for the kNN classifier increase linearly with

the number of features when the direct nearest neighbor computation is

used, and (3) when using the “clever” techniques for nearest neighbor

computation, this increase in computation with the number of features is

even more severe, as we will see later.

There are N!  /MUN - M)I unique ways in which we can choose M features

from a collection of N features. This combinatorial is denote d by the

conventional notation (
~

) . Thus, ) denotes the number of two feature

subsets that are in the six features:

15

- 
_ _ _ _ _ _ _ _ _



( 6 1  = 
6! 

= 
6 x 5 x 4 x 3 x 2 x 1  

= 15!2 1  2 !(6 - 2) ! (2 x 1) x ( 4 x 3 x 2 x 1 )

Similarly,

(
~

) = 20, (
~

) 15, and (
~

) = 5

By evaluating the kNN error rates with all subsets of a given size (2, 3, 4, 5),

we found the best subset of size 2, 3, 4, and 5 and the corresponding k (the

number of nearest neighbors used). Table 2 summarizes these results.

Fewer features generally tend to yield h igher error rates although the

relationship is by no means strictly monotonic as we can see from Table 2.

From this analysis, we have chosen the best subset of four features (Ii~~~’

~O2’ 
p21’ ~o3~ 

as the features to be used in the recognition classifier. In

fact, these features yield an error rate of 21. 6 percent, which is lower

than the error (22. 5 percent) with all six features. The confusion matrix

with the8e four features is given in Table 3.

This results in a total correct classification of 178/227 .784, or 78.4

percent, which is somewhat better than the corresponding performance of

75. 3 percent obtained with the CTC classifier reported in the Second

Quarterly Progress Report.

Choice of Distance Measure

In the above kNN classifier, we used the usual Euclidean distance to define

the neighborhood. The Euclidean distance between two n-dimensional

featu re vectors X and Y is given by

16

__________________________________ - - — ———— ---—--- -. —~ - -- ~~~~ LJ~ - - - - - -~~~~~~~~~~~
_

_ _ _  _ _ _ _

~~~~~~~

-

~~~~

- - - _ _ _ _ _



;t -J. 
-

j
0

—~ . 
~~ 6

LI) ~~~ •0 • LI)s.d :t ~ I.-.1

-4~~~~~

~~~~~~~~~ ~~

-~~ ~~1. 4.•- Z
V V

~~~~~~ Cl, O~~~u3 ..Cfl~~~ 
- -

17

~~~1~ - — - 
~-1

w,.— —

— ~~~.

TABLE 3. PERFORMANCE OF THE BEST FOUR MOMENT SET
(kNN classifier)

Assigned Class

— _ _ _ _ _ _ _

Tanks APCs

~ Tanks 112 31
0

APCs 18 66

4(X,Y) = E (x . -) 2

i~ 1

where

TX = (x . . . x

Y = ~~~~~~~~~

This distance measure involves computation of squares, which is a time-

consuming arithmetic multiply step. Other measures such as the “city block”

or “taxi-cab” distance are easier to compute.

The “city block” distance between sample vectors X and Y is given by
n

d(X, Y) E I x . - y 11 .
~~~

i~1

- 

18 

- 

- . ~~~~~~~~~ ~



where the sum of absolute differences substitutes for the sum of square d

differences in the Euclidean metric. This metric avoids the multiplies

and is therefore easier to compute.

We computed the kNN error using the city block distances for the first six

subsets of four features from the six intensity moment features. The

results are shown in Table 4, which shows the confusion matrixes for

each case as well. From these runs, we see that the city block distance

performs almost as well as, but is almost consistently behind, the

Euclidean distance. Timing analysis in the software section shows that,

in the PATS processor, there is very little to be gained by using the city

block distance. This is in part a consequence of the 115 nsec hardware

multiplier/adder used in the PATS processor.

Fast NN Computation

The computer program for nearest neighbor analysis in our simulation uses

the brute force approach to find the nearest neighbors. That is, to find the

ner.rest neighbors of a given test sample among a training set of N samples,

w~ compute all N distances. Recently, clever schemes for finding the

nearest neighbors without evaluating all N distances have been proposed.
2’ ~

These algorithms are based on ordering the training sample set in such a

2K. Fukunaga and P. M. Narendra, “A Bran ch and Bound Algorithm for
Computing k-Nearest Neighbors,” IEEE Transactions on Computers, July
1975.

3J.H. Friedman, et al., “An Algorithm for Finding Best Matches in Logar-
ithinic Expected Time “ACM TOMS, Vol. -3, September 1977.

19

_______________________ ___________

- 
-r_ __  

~
- - -- -~~

--—- 
—



TABLE 4. COMPARISON OF THE EUCLIDEAN AND CITY BLOCK
METRICS FOR THE kNN CLASSIFIER

Metric Used

Feature Set Euclidean C ity Block
Confusion Percent Confusion Percent
Matrix Error Matrix Error

113 30 111 32
1
~11s 

11021 ~30’~ 21 21 63 22. ~ 22 62 23. 8

119 24 115 28
~11’~~O2’~~3O’’~12 32 52 24.7 36 48 28.2

120 23 120 23
~11’ ~

‘02’ 1~30~ ~
‘03 38 46 26. ~ 34 50 25. 1

119 24 108 35
~11h

1&02111211
~~12 31 53 24.2 21 63 24.7

112 31 110 33
~~~~~~~~~~~~~~~ 18 66 19 65

114 29 114 29p11’ &
~02~ 1~120 1103 30 54 26. 0 31 53 26.4

way that we do not have to consider all samples when finding the nearest

neighbors. Thus, there is some overhead in the initial preprocessing of

the training samples. But this needs to be done only once for a given set

of training data. The utility of these algorithms for PATS depends on
— I

several considerations. A characteristic of these algorithms is that their

relat ive efficiency increases with the number of training samples and

decreases rapidly with the dirnensionality, the number of features ueed.

20

L~~- -

~~~~~~~ - -
~~~~~:~~~-~~~ ‘~~T~ ~ J. ff ’


This was one of the reasons why we reduced the feature subset to the

smallest size possible without sacrificing recognition performance.

Both Friedman’s algorithm and the Fukunaga-Narendra algorithm are very

similar in performance and principle. But Friedman’s paper contains
exhaust ive s imulat ion results which let us predict w ith reasonable accuracy
the computational effort involved in implementing the approach in the PATS

processor. Therefore, we are implement ing Fr iedman’s scheme in the
PATS processor.

A preliminary analysis of nearest neighbor to computation requirements

was made for the PATS processor. A four-feature Euclidean distance

computation requires 3 i sec. Assum ing 1000 training samples, the

classification of one object requires 3 msec when the brute force technique

is used, ignoring overhead. For 10 objects, this is 30 msec. But all

other functions in the processor-object extraction, moment computat ion,
etc., take up a total of 28 msec (see Section V). In this light, the 30 msec

requirement for the nearest neighbor computations seems to be excessive

although the total processing time (68 msec) would still be under the 100

msec limit allowed when overhead is ignored. With 100 percent overhead,

we would be overloading the processor.

Using the fast NN algorithm, we can reduce the number of distance compu-

tution~ down to 100 even when the training set contains 1000 samples. This

implies a saving of a factor of 10 and is well worth pursuing. Therefore,

10 objects can be classified in 3 msec. Even with 100 percent overhead,

this is 6 msec.

21

- -

Another feature of these algorithms is that the computation is almost inde-

pendent of the number of training samples. A training set of 2000 samples,

for instance, would require the same number of distance computations (100)

but perhaps a little more overhead. Therefore, if occasion demands, we

can accommodate a number of mission scenarios in the same training set

by expanding its size.

The Fast NN Algorithm--We will give a brief description of Friedman ’s

algorithm here. The training samples are first preprocessed, which

consists of dividing them into successively smaller subgroups. The

hierarchic subdivision is represented as a binary tree structure. Figure 3

shows such a tree for 256 samples. Each group is successively divided

into two subgroups of equal size, until the terminal stage. There are 16

groups with 16 samples each at the terminal stage. Each group is divided

by choosing the axis (feature) with the largest variance or spread and

splitting the axis at the median of the distribution of the sam ple on that

axis. This tree and associated bounds are stored in a simple data

structure. This completes the preprocessing step.

When a new sample vector needs to be classified, we have to find its k-

nearest neighbors from the training set. Starting from the top of the tree,

each group is examined to see if the group might contain the nearest neigh-

bors of the new sample. The efficiency of the algorithm lies in detecting

groups that cannot contain the neighbor of a point. We can then eliminate

them from the search. This test to assure that a group of samples at any

level of the tree cannot contain the k-nearest neighbors is called the “ball

overlaps bound” teat. Figure 4 ilLustrates this test with a two-dimensional

H 22

_ _ _ _ - - - - - - : r ~~ - --- --.~~-~~~~~-
- . _ i_ ~~~~ _~ _ , _

~~~~ - - .



-J
( ~~.4 C\J

___

_ _ _  

:h:I

23

— :: ,. L-~
--- - 

~
- 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~- 
;1-

~~~~~ ~~ 
~~~~~~~~~~~~ ~.Ui~~r


example (two features: 1 and 2). The rectangle shows the bounds along

dimensions 1 and 2 of all the samples contained in a given group. X is the

new sample (X
1
, X2, X 3, and X4 show som

e possible positions for X rela-

tive to the bounds). Let us assume that the kth nearest neighbor found so

far in the search is at a distance r from X. The test is to see if az~y

samples within the rectangular area could be closer to X than the kth

nearest neighbor found so far. If this test fails, then we do not have to

compute the distances between X and all the samples within the bounds.

This test is equivalent to seeing if the hypersphere (ball) of radius r over-

laps the bounds. In Figure 3, and are outside the bounds, whereas

it is poss ible for X
3

to have a nearer neighbor found within the bounds than

the nearest neighbor found so far. This test is relatively inexpensive and

requires at most N comparisons (N is number of features) and N squaring

operations.

=
~~~

OBO

~~~
r

x 3

+

~

2

I

~

and - ball does not overlap bounds

- bell overlaps bounds

x4
- ball completely within bounds

Figure 4. Ball overlaps Bounds and Ball within Bounds Tests

24

~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~
— - ___________________ __________________________ - - i!_ ~



If the “ball” is completely within bounds as shown by X4. then the nearest

neighbor of X4 has to be in this group and this group only. Therefore, if

this test is satisfied for any group, we terminate the search, and the

current k-nearest neighbor list contains the nearest neighbors we want.

If the ball overlaps the bounds (as with X3 
in Figure 3), then we descend

down the tree and test one of the nodes under the current node. When a

terminal node is encountered, we f ind the distances from X to all the
members (16) of that terminal node and update the list of nearest neighbors

and their di stances.

The preprocessing- -building the tree and the bounds for each node - -will be

done off line in the “training process.” The tree and the tra in ing samples

will be stored in the PATS memory. The storage required (in excess of

the storage required for the training sample s themselves) is not very

significant. For 1024 samples, 16 samples/terminal bucket, we have 64

terminal nodes. This results in a binary tree with 64 + 32+ 16 + 8 + 4 + 2 + 1 =

127 nodes. Each node stores 2 x N bounds (defining the rectangular area

in Figure 3) where N is the number of features. With four features, the

storage associated with the tree becomes 4 x 2 x 127 = 1016 words. It is

also necessary to identify the sample vectors that belong to each terminal

bucket. This requires 64 x 16 = 1024 words of memory. Hence the total

storage associated with the algorithm will be 1016 ÷ 1024 2040 words.

Storing the samples themselves requires another 4 x 1024 = 4096 words

of storage and 1024 words for the ground truth .

A detailed analysis of the algorithm steps will be made in the next reporting

period prior to coding the microinstruct ions. At this time we feel that the

fast NN algorithm is simple enough to be implemented in the PATS processor.

25 
-

S



INT ERFRAME ANALYSIS

The outputs of the clutter rejection and recognition classifiers are a set

of symbols and coordinates representing decisions on all extracted objects

in a frame. Preceding and succeeding frames will have similar symbolic

representations of the decisions for those frames. After registration and

correlation of each symbol to a symbol on the previous fr ame, the result

will be a variable length string of symbols representing a sequence of de-

cisions on a given extracted object. For example, the symbol string

TTAC TT

for a sequence of seven frames may represent a decision sequence where

T = “tank,” A = “APC,” C = “clutter,” and a blank represents a miss

(object not detected).

The decision displayed to the operator will be more reliable if it is based

on the multi-frame decision sequence than if it is for a single frame. The

ques tion, then, is how to process the inform ation represented by the symbol

string to provide the best decision.

One approach would be to store the feature vectors for each of the extracted

objects over a sequence of frames and compute a “smoothed ” feature vector

for each frame. The smoothed features would then be used to compute a

more reliable decision for each frame. However, this approach would

require excessive memory and computation, would not necesfIarily provide

a more reliable decision, and would not resolve the problem of ambiguities

resulting from different decisions on successive frames for the same

object.

26

________________ — — -~- —-- — — 
.- — ~

-‘*I~--- ——- —.~~~~~ 
— —



An alternate approach, and the recommended one, is based on Bayes’

theorem. —

Decision Smoothing by Bayes’ Theorem

Let A 1 represent the true event “tank, “ A2 represent “APC “ etc. The

corresponding decisions will be the events T, A, etc. By Bayes’ theorem,

the posteriori probability of the presence of a tank, given the decision “1’,”

is given by
P(T/A 1)P(A 1)

P(A /T) P(T)

where P(A
1
) is the a priori probability of the presence of a tank and P(T/A1

)

is the conditional propabi].ity that the target screener will correctly label

the tank. -

Similarly,
P(A2 /T )P(A2)

P(A2/T) 
= _____________

P(T)

is the probability that the object labeled “T” is actually an APC, where

again P(A2
) is the a priori probability that an APC is present and P(T/A2)

is the probability that the target screener will incorrectly label the APC

as a “T.”

The conditional probabilities P ( T I A1 ), P(T/A 2
), etc. are the entries in the

confusion matrix resulting from the classifier training. The priori proba-

bilities PM 1), PM 2 ), etc. are determined by the engagement scenario and

can be entered by the commander in the field.

27



We can write the probability P(T) in terms of these known quant ities:

P(T ) = P(T/A 1)P(A1) + P(T/A2)P(A2
) -I-- . . . + P(T/A

N
)P(A

N
)

where N is the number of classes for which the classifier is designed.

The approach to decision smoothing is to apply Bayes’ theorem recursively

to each decision in a string. Thus , the a posterior i probability of a given

target class in one frame becomes the priori probability for that class in

the next. A simple example will Illustrate the approach.

Suppose we have a two-class target screener with the possible events being

A 1 
= “tank ” and A2 = “not tank.” Further suppose that the probability of

correctly labeling a tank is P(T/A1) = 3/4. Then the probability of a false

alarm is P(T/A2) 1/4. Also, let the a priori probability of a tank presence

be 1/4. Then we would compute the following sequence of a posteriorl

probabilities for a string of decisions TTTT:

FRAME NUMBER POST ERIOR I PR OBABILITY

1 P(tank/T) = 3/4 l/4 
— 1/23/4~l/4+1I4 3I4 
—

2 P (tank/TT ) = 3/4 . 1/2 - 3/4
3/4.112+114.112 

—

3 P(tank/TTT) = 
______________  - 9/10
3/4.3/4+114.114 

—

4 P(tank/TTTT ) = 3/4 9/10 - 27’283/4 .9/4+1 /4 .1/ 10 
— I

28 

____________ 

p
4-



Note in this example that the string of correct decisions increases the

probability monotonically of the correct decision being displayed. In general,

if incorrect decisions are Interspersed in a string of correct ones, the

sequence may not be monotonic and it will take a larger number of frames

to achieve a given confidence level. A low priori target probability will

also require a longer sequence of correct decisions to achieve a given con-

fide nce level.

The advantages of this approach are as follows :

1. It is computationally simple and storage requirements are minimal.

2. It optimally uses the available information.

3. Target screener performance can be tuned to the operational

scenario In the field by specif ying the a priori probability of
encountering each target class.

4. The decision can be displayed with a specified confidence level

by thresholding the a posteriori probabilities.

Priority Target Mode

The J3ayr:s’ a posterlori probability approach provides a means of imple-

menting the priority target mode of operation, where two of the five target

classes are of much greater interest and the false alarm rate must be

significantly lower. As noted above, two ways in which this can be accom-

plished are by specification of a priori target probabilities and by

specification of decision display confidence thresholds. A third modification

is simply to relabel the stored training samples in the nearest neighbor

29

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-



classifier so that all non-priority targets are, in effect, treated as clutter.

This relabeling will change the confusion matrix and consequently the

conditional probabilities used in Bayes ’ theorem. Training data are not

yet available for the priority target classes so this concept cannot be

evaluated.

- S.

30 

- ~~~~~~~~
- -~~~~~~~

- -

~~~~~~~~~~
-
~~~~~~ 

:- -~~~~~~~~J~~ _ _ _ _ _ _



SECTION III

SOFTWA RE DESIGN

The PATS implementation software has been summarized in a previous

report.’ What follows is a presentation of essentially the same information

with some additions and organizational modifications. The software

descriptions are given in a modular input/function/outpu t format and tend

to emphasize the data structures used by the PATS algorithms.

The major difference between this and the previou s report is the addition

of the k-nearest neighbor recognition classifier. This classifier is dis-

cussed in detail in Section II , and some details relevant to its implemen-

tation are covered here .

PATS software function s, as before , are partitioned between two proces-

sors, CPU 1 and CPU 2. CPU 1 is a high speed, purely microprogrammable
processor of special design which bears most of the PATS real-time compu-

tational load , whereas CPU 2 is an off-the -shelf , medium speed, mini or

microcomputer whose principal function is to interface the PATS system

to external peripherals of standard design (i. e., mag tape, floppy disks,

etc. ). Functional descriptions of the variou s software modules making up

both processors are g iven below, with emphasis on module interplay and

data st ructure manipulation.

31



- ~~~~- - - - - -

CPU 1 SOFTWARE

The software for CPU 1 can be broken down into two categories: bin

generation and bin ciassification. Bin generation segments the FUR

image into two-dimensional objects by matching intervals from adjacent

scan lines. Bin classification processes each of these obje~ ts and dete r-

mine s whether it is target or clutter; if it is a target , it outputs its type ,

size, and location to CPU 2 for symbol generation and the interfram e

analysis.

The various modules making up bin classification are shown in Figu re 5.

Each module processes a single b in at a t ime and passes it on to the
succeeding module. Each of these modules is described later in this

section.

CPU 1 accesses three memories in the course of its computations.

Memory 1 buffers interval data from the interval generation hardware and

is used by CPU 1 to develop the object bins, it is also used as a scratch

pad in computing object features. Memory 1 is very fast (under 200 nsec

access) in order to match the processing speed of CPU 1 and because CPU 1

accesses it quite heavily. Memory 2 stores a digitized video field for the

purpose of computing intensity moments . It is slower than Memory 1 since
it is not accessed very heavily. CPU 1 only reads from Memory 2; it

never writes into it. A third programmable read-only memory (PROM)

will store the prototypes for the k-nearest neighbor recognition classifier.

32

- - - - ~~-~~- -



_ _  

-

~~~

_ K?
~~

L4J
(-)

~ ~~~

— I--

I ~~~jG’I—I ~~~~~~ I—
I ~~~~~~~~

4-’
I c)w c) —’

C
-

L - ’~-~--’ _______
0

r

’

~~~~~~ 

I
U)

_ _ _ _  

_ _ _ _  

I
x L.J ,.- Q t#,
__J I_ w
L.i~~~~~ 

LU _i
~~~_Jw ~~~L)
~~. L) ~~

~ I
H -

w w _ ~~
Lu
C-.

1’ ~ .- I— _JL~l

H t .
LU LU

H
__J
L)

A

H .

A

•
‘I

‘-I”..-

— —

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
r ::!~‘

- 
~ ~~~~~~~~p--~-.--- 

~~~~~~~~ 
-

Software Oigariization

Two alternative organizations are being considered. The first is shown in

Figure 6. In this scheme, bin generation processes the entire FLIR image,

creates all possible bins, and then passes them to bin class i ficat ion where
they are processed one at a time. The chief advantage to this organization

is that it preserves modularity which allows easy insertion of additional

modules between bin generation and bin classification. Object data would

be available to such a module (e.g., bin merging) on a global (i.e., frame-

wide) scale.

In the second approach, bin classification performs for each bin immediately
after it is found by bin generation (Figure 7). An advantage of this approach

is that, since a bin is processed immediately after it is found, its memory
area can be released and reused by CPU 1 to hold another bin. This would

allow more efficient use of Memory 1.

BIN ALL BINS J GET A BINGE NERATION CLA SSIFIED BIN
I

CLASS I FICATION

NO TARGET?

REPORT TYPE , I YES
SIZE , LOCAT ION

I
Figu re 6. Software OrganLzat ion for CPU 1 (Bin generation

finds all b ins before any classification is done.) L

- -

- —-- — -~~~~ I - ___ _ _ _ _ _ _

- -

I BIN GEtff RA J ION

CLASSIFICATION
St Z ~ . LOCA T ON

~ [__

Figure 7. Alternate Software Organization for CPU 1 (Bin
generation finds a bin and immediately passes it
to bin classification.)

It is likely th at the second alternat ive will be chosen for the implementat ion
because of the memory savings. However, a switch from the second to the

first alternative would not be difficult to accomplish.

Software Module s

Bin Generation- -

Input: Interv al data are dumped to the upper 8 K words of Memory 1
in the format shown in Figure 8.

35

~_
.

~~~

— 

I



k 1O BITS 6 BITS _ _ _ _ _

~J i 
~~~~~~~~~ 6 BI TS I 

_ _ _ _ _ _ _ _ _ _ _ _ _

LINE NUMBER NUMBER OF

INTERVALS

H/!C1 START ING X WIDTH

F I RST
INTERVAL - E I

LEFT/
RIGHT UNUSED BRIGHT COUNT
EDG E _____________________

2

C

H/C STARTING X WIDTH

LAST
INTERVAL E I W

LEFT!
RIGHT UNUSED BRIGHT COUNT
EDG E

2

Figure 8. Interval Data Format

36

i4’- -~ .

_ -;-
~
-
~~

- - - _ - ,~~~~ —~,TT~~~~ i-~--- — — - - - - - - -‘-

I I
—

Output : Data blocks in Memory 1, each containing interval data, are

reorganized into a two-dimensional object or bin. These data blocks

have f ixed lengths; th eir format is shown in Table 5.

TABLE 5. BIN FORMAT

Word Contents

1 Address link to next bin
2 M idpoint (from last inte rval in bin)
3 Start ing X
4 X+width
5 Bin color (H/C)

Bookkeeptr g

6 L ine number on wh ich b in starts
7 Total scan count (N)
8 Active scan count

(9 X
First interval J 10 Width
in hin

~
) Packed features

~
4N + 5 x

Last interval J 4N + 6 W idth
in bin ÷ Packed features

4N+9
Object features (target contrast,
momenta, etc.)

160

37

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Funct~on: Bin generation (or “bin matching,” as it was called in

Reference 1) segments the FLIR frame into two-dimensional objects.

The concept has been discussed in References 4 and 1. Reference 1

summarizes the implementation.

Figure 9 expands upon the second alternate approach to CPU 1 software

organization by highlighting the principal functions of bin generation. Note

that two lists of unclosed bins will be maintained: one for hot bins and one

for cold bins. This will eliminate hot/cold indicator comparisons between

bins and intervals. A list of the locations of available bin areas in Memory

1 will also be maintained. Such a “free l ist” is necessary because b ins

close randomly with respect to one another, and we would like to be able

to easily find bin memory areas which can be reused.

The hot and cold bin lists will be maintained as linked lists in ascending

order according to the value of the midpoint of the last interval associated

with each bin. Bin generation will first try to establish overlap between

a bin and interval and, once overlap is established, will check for midpoint

correspondence. A subsequent PATS quarterly report will contain a

detailed description of the bin matching algorithm being implemented.

Preliminary Clutter Screening and Clutter Feature Computations--

Input: Object b ins in Memory 1 that are produced by interval matching.

4
D. E. Soland. “PATS Quarterly Progress Report, ” Contract No. DAAK7O-
77-C-0248, Honeywell Systems and Research Center, Minneapolis.
M innesota, January 15, 1978.

38

~~~~~~~1~ - 
- — —— - -— -~~ 

-
~~~ ~~

P
~~~~~- - - -  - - - —~~~f 

- -



LU

I— cl

v-I

1 -J V~I— Z
I-A —

F— ~~

— I c ’-.I ~- i-- ’~~ C)

I— _i LU ~ J LJ  .J U)
CD _J • LU F- • I— ~~

~~.‘ Ll~ I-A C- C) LA ._i ~~~
~~ F- — LA 0-. ~~~

<~~~ CD I- CD
CD ~~ CD LA >- ~~~ V Z — Z _j

~~ ______  0
U) CD0- ’ CD L)~~~ 4.’
—J cI c.~~v) U)L~~ F— L  cd

t~~~~~~ U C D U I . -. L.J Q
).~ .-. C - . W W V )~~~~Lj
LA U) U) ~~ U) LA UI
LlJ~~~~~C) C ) Q < C D L
LA~~~~~~~~~~)ci~ LA < F —

1~~~~
- —

LU LA ‘-4 F- ~~ F- Z LA I
~~ 0 ~~ ~~ ‘-‘ — I

~-. .~ I-~ — c~ ~~ I
U) ~~ W 0 CD
U) LA ~.aJ ~~ ..~ • ~~LU LA I— U) LA F- vi
LA I— Q- Z F— ~~ U) ~~ F- ._i vi
LA < Z ~~~ 

0-0 ~~ — —<C D  ~~~ >. -j CO ~~ ~~
. ~ J CO

_.j ~~
. ~‘ LU >- CO ~~ 0 I

Ø~~~~~~~~- C O~~~ .Ø L i I~
I- _i I-A <L U  (/) ~~ Li.. I— I— I.- 0 LU C) LU U) <LU

U) L AO  U)

_J~~~~~~~~~~_a
O

I

h
39

—~~~~~~~~~~

- 
-

-~~~~~~~~~~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

~ 2~



Output: Object bins with markings indicating whether a given bin is

active or inactive; active bins contain new features for clutter

rejection.

Funct ion: Object features are compute d for the purpose of clutter
rejection. These features are coinputationally inexpeflsive and only

involve accesses to Memory 1 (i. e., they do not require individual

pixel intensities).

For a given bin, in it ially the following two featu res are computed:

• Total bright count

• Total width (area)

These features are immediately thresholded after computation, and bins

not sat isfy ing the thresholds are immed iately rejected as clutter and

marked as inactive. This first stage of clutter rejection is followed by an

add itional, optimized clutter classifier which uses some additional features.

The features currently used by thia classifier are:

• Area

• Total number of occurrences of left and right edges

• Average intensity

• Average contrast = average intensity-average background

These features are only computed for bins which pass preliminary clutter

screening and, once computed, are stored within the bin areas in Memory 1.

40

_ _ _ _ _  — —-- — - ~~~~ — 
- 

- - - - ---- ~~~~~-~~~~~~~~~~



Optimized Clutter Classifier- -

Input: Object bins in Memory 1 that remain active after preliminary

clutter screening. Features are read from each bin as input to the

classifier.

Output: Object bins with markings which indicate whether a given bin

is active or inactive.

Function: Each bin which passes preliminary clutter screening is

processed by the optimum clutter classifier. Bins rejected by this

classifier are marked as inactive and are no longer accessed.

The clutter classif ier is tree-structured and involves threshold ing on the

features. The classifier structure is discussed in Section II.

Median Filter- -

Input: Object bins which have passed the optimum clutter classifier.

Output: Object bins with modified starting X values and widths.

Functions: Clutter rejection does not use object shape. However, b ins

which are not rejected as clutter are then processed by the recognition

classifier which uses intensity moment features. Intensity moments

depend upon object shape, and the median filter smooths the boundaries

of a bin using a one-dimensional median filter of width three.

41

— — ----- ~~~~~~~~~~ - - -- - - ———--—— -—---  — —~~ 
- 5— — - --.~~2’~~a,._ -fl --- 



The inputs to the filter are the endpoints of the intervals making up each

bin. A separate filtering operation is done on the left-hand and right-hand

edges of each object. Each triplet of endpoints on a given edge is sorted ,

and the m iddle endpoint of the triplet is assigned the middle value from

the sort . Note, however, that this filter is nonrecursive; only original
endpoints are input to the filter, not filtered ones. All the intervals within

each bin will be processed and, where necessary, start ing X values and

widths will be updated.

Moment Feature Computations- -

Input: Median filtered object bins in Memory 1 wh ich rema in act ive

after processing by both preliminary clutter screening and the opti-

mized clutter classifier.

Output: Active object bins, each with four additional moment features.

Function: The intensity moment features 
~~~.

‘
~~~~~~ ~2O’ p21’ and

are computed for the remaining active bins. Their definitions appear

in a previous report~ Once computed, these features are stored in

the bin areas.

Recognition Classifier- -

Input: Object bins in Memory 1 remaining active after processing by

the clutter classifier. Moment features are read from these bins as

input to the recognition classifier.

42

______ _________________________ —~~~~~~~ 
— -



Output: Object classifications, together with object sizes and locations.

These data are stored in an area of Memory 1 for direct memory access

(DMA) transfer to CPU 2.

Function: The recognition classifier puts each active object bin into

one of five target categories us ing only the moment featu res for that
object and stores that classif ication in Memory 1 together with the

object size and location (location information is derived from data in

the bin). After all bins have been processed by this classifier, CPU 2
is interrupted by CPU 1 and all the classification information is trans-

ferred to CPU 2 memory via DMA. Processing then transfers to CPU 2.

Current plans have CPU 1 idle during the remainder of its 0. 1 second

processing frame, but th is will probably change after a detailed timing

analysis of the PATS implementation software is complete.

The recognition classifier is of the k-nearest neighbor variety and is

described in detail in Section II . Timing considerations for this classifier

are a1~ o discussed there, and the issue of Euclide an versus city block

metrics is raised. It turns out that , for the PATS implementation, the
Euclidean metric can be calculated just as quickly as the city block metric

owing to the presence of the fast (115 nsec) multiplier/accumulator. The
microcode for computing the squared Euclidean distance

4
2 — —  2Y) = E (x . -

i=1

between two four-tuples ~ = (x1, x2, x3, x4) and Y = (y 1,y 2 1y 3, y4) will be

similar to the following:

43

_ _ _ _  —-—- ~~~~~~
--  —-—- - - --i ----- - - -  -

- - - - _- - -



Instruction Function
Number

1 Clear accumulator registe r in multiplier.

2 Fetch x1 from Memory 1; put in Hi (Ri = register 1

on 2903 ALU).

3 Fetch y1 from Memory 1; form Ri - y1; store

result in R2 and in Y latch on multiplier/accumulator .

4 Store R2 in X latch on multiplier.

5 Enable mult iply/ accumulate function. Fetch x2
from Memory 1; put in Ri.

6 Fetch y
2 
from Memory 1; form Ri - y2 ; store

result in R2 and in Y latch on multiplier/accumulator.

7 Store R2 in X latch on multiplier.

8~~~

9 Repeat instructions 5, 6, 7 for x3 and y3.

10 J
ii 1
12 Repeat instructions 5, 6, 7 for x4 and y4.

13 0)

14 Enable multiply/accumulate function .

15 -Fetch final result f rom accumulator register on

multiplier.

15 instructions z 200 nsec/ inatruction = 3 ~sec/distance calculation

~~~~t. -

44

~~

-- — . - - -- -w-~_-~~-
~~~~~~~ ~~~~~~ 

- - ---
~~~~~~~ 

- — - .-
-—

On the other hand, the microcode for computing the city block distance

d (X , Y)

would be as follows:

instruction Funct LonNumber

1 Clear R2 in 2903 ALU .

2 Fetch x1 from Memory 1 and store in Ri.

3 Fetch y1 from Memory 1; form Ri - y1; store result
in Ri .

4 If Ri > 0, go to instruction 6.

5 Negate Ri.

6 R2~~~R2 + R1

Repeat instruct ions 2, 3, 4, 5, 6 for x
2 and y2.

14 f
) Repeat instructions 2, 3, 4, 5, 6 for x3 and y3.

15
16

17
18
19 Repeat instructions 2 , 3, 4, 5, 6 for x4 and y4.
20
21

21 instructions x 200 nsec/instruction = 4. 2 p.aec/distance calculation

45

~l

_ _ _ _ _
T~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

Thus because of the multiplier/accumulator, Euclidean distance

calculations are roughly 1 ~sec faster than city block calculations.

The prototypes for the k-nearest neighbor classifier will be stored in fast

4 K x 16-bit PROMs (allowing 1000 prototypes, four features per prototype,

and one 16-bit word per featu re). This PROM will be in the CPU 1 address

space along with Memory 1.

CPU 2 SOFTWARE

The definitions of the CPU 2 software modules have not changed since the

previous quarterly report. This software is diagrammed in Figure 10 and

summarized in this section .

The software is divided into operational and diagnostic sections. The

operational software is used both when the PATS system is running normally

and when it is being tested or trained. The diagnostic software, however,

is used only when the system is being tested or trained.

Operational Software

Interfraxne Analysis- -

Input: Object classifications and locations in Memory 1 produced by

CPU 1 from a single frame of data.

Output: A cumulative classification for each object based on the

inte rframe analysis. 4

46

Li?
—

~~~~~ ~~ ~~~~~~~~~~~~~~I I 2~~~ I I I ~~~V)
LA I F- .-i U) CD I F- LU I I F- 0.. I U)
LU < )  U) ‘-~ x o LA

~~~~~~~~~~J L~~~~~~J~~~
1

i i ~~ I
I I ~~~~~>- I)— U)

W J
~ .J F- LU

i I F-~~~ I < ~~~‘I I ~~~~~ I U)
I I C- - < I I-

_ _ _ _
LU LU
F- F—

U — I.—.!
0

F - I
W

~
-

= 1 1 0- <
~~~I >- LA
~~~I F - C )
W I

~- I F-
LA .
LU W

— ...L... NJ —

_ _ _

J
ill

~~~~~~~~~~~~~~~~ ~

-~~~~~~ 
I-



Function: Object data are passed to CPU 2 via direct memory access

from Memory 1 and stored in CPU 2’s memory. These object data

start at a fixed location in Memory 1. CPU 2 is interrupted from

CPU 1, and then data for a single object are transferred from Memory

i to CPU 2. While CPU 2 is processing these data, CPU 1 will con-
tinue with its own processing and generate more object data. Inter-

frame analysis adjusts the classification of an object from successive

single frame classifications. The result is a cumulative object

classification.

Symbol Generation- -

Input: Cumulative object classifications, their sizes, and their

locations within the current frame.

Output: Graphics overlay on FLIR video output highlighting object

locat ions and classifications.

Function: Object classifications produced by interframe analysis

together with object sizes and locations are used to generate a display

in a 256 x 256 dot graphics memory. Possibilities include drawing

a box around the detected target and appending a symbol which indicates

the target’s class.

48 - -

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~

— -—------ -------
~~~~~~

— -



Diagnostic Software

Test Data Generation- -This module will load test data into Memory 1 and/or

Memory 2 in CPU 1 for the purpose of testing the implemented PATS algor-

ithms on known data. The test data will be generated either internally or

will be loaded from tape or floppy disk.

Featu re Dumps- -This software will interact with CPU 1 to accomplish

dumps of inte rval and object features from Memory 1 onto tape, floppy

disk, line printer, or CRT. These dumps will be used to check out CPU 1

software and to do off-line classifier training. This software will also

dump information to help check out the CPU 2 operat ional softwa re .

49

- 

-
-

~~~~~~~

-

_: ~~ _ _ _ _ _ -

SECTION IV

HARDWARE DESIGN

The PATS hardware design tasks have been broken down into the following

subparts:

i. Image enhancement 6. Memory 2 (intensity information)

2. Edge signal 7. CPU 2

3. Bright signal 8. Symbol generation

4. Interval generat ion 9. Sync and timing

5. CPU 1

The functions and requ i rements of items two through nine are covered in

the hardware specificat ion. Item one has been covered in a previou s report .

This section discusses those designs which are nearly complete and being

submitted for build. For each part a detailed block diagram is presented

along with a discussion of how the circuit works and major parts used in

the design . Specifi c values of components are not provided for resistors

and capacitors.

EDGE SIGNAL

The edge signal derivat ion is shown in Figure 11. The video output from
the FUR or from the image enhancement is used for the video input. The

edge operator Is two-dimensional in that it uses three scan lines of data

for determining an edge. The video data are delayed by two one-line delay

50

..— .—---- - - -- - - - - ------
-

----- - ~~~~~~~~~~~~ - .=-~~
-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.~Q
0

‘—- I 

- ‘ - - 4..

I

_ _ _ _  

—

51

f

-

_ _- - ---- 

-

‘ -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~

-
-

-4

lines. These delays consist of a Fairchild CCD321A3 delay line and the

associated clock drive r circuitry. Each of the delay lines is followed by

a unity gain buffe r amplifier which drives a low impedance, low pass filter.

This low pass filter is used to reduce the clock noise present on the output

of the CCD. The CCD is operated in a multiplexed mode giving 910 sample s/

line.

The three lines are summed together with a 318 operational amplifier (op

amp). The 318 has a 15 MHz small signal bandwidth and a 50 Vt,.~sec slew

rate . To create an analog edge signal, the output of the 318 is delayed a

few pixels; then the signal and a delayed version are subtracted in the

differencing amplifier (dif amp) to give a signal that goes positive for rising

edges and negative for falling edges. In the PATS hardware, we do not

distinguish between rising and falling edges but we are concerned with

where the edges are located relative to an object. Hence, the absolute

value of the diffe rence signal is taken. A specific implementation of the

absolute value is shown in Figure 12. This absolute value circuit is used

in several places in PATS. It consists of two LH 0024 op amps which have

high bandwidth and fast slew rate and two Hewlett-Packard Schottky barrier

diodes. These diodes are chosen for their fast switching and low turn-on

voltage.

The primary concern in estimating the absolute values is uniformity. That

is, a dc offset can cause one edge of equal rising and failing edges to end up

slightly larger than the other. Adjustments during the checkout phase will

eliminate any dc offsets.

52
- -

____ - --- ,—.--- -~
~~~~~~~~ - 

1-- - —--
~~~~~~~ 

—.-———- -

4.,

a,
U

±~~~~~~~~~~~~~~~~~±A~~

0.

—4

I’
U)

20.
U)

—4 CD
~~C) — •

F H
I

~~ r-. i _.i + .
~~ s

L) L A I
_ _ _ _ ~~~~ 0-

_J _ J E
4J....

CD
0~~ 03

-
I

CU . . .
— U) CO C.)CU , CU.~ 03

CU I CD

8:
1~~

r H/

~

\r * I

* 53

--

-Li -
b..

-

.,- - - ~~~~~~~~~~
____________________ ——

I

The thresholds for the edge signal are determined by integrating over each

line to get the average value during each scan line. During the blanking or

retrace time, switch 1 (Fig’~re 11) is connected to the grounded input. In

this way the integrator does not have any input and hence will not change

during the time its outpul is being sampled. Switch 2 switches in either

or R2 depending upon whether the video input to the system is 875 lines or

525 lines per frame. Switch 3 clears the integrator to zero during the

retrace time before the next line starts.

The output of the integrator feeds the threshold determination. Sample /

hold (S /H) 1 is sampled immediately at the end of a horizontal line. Then

shortly after the completion of sampling S/H 1, the sampling of S/H 2 is

initiated. S/H 1 samples the sum of the int egrator and S/H 2. This pro-

vides a recursive filter determination of the edge threshold. The output

of S/H 1 feeds a comparator . The edge value from the absolute value is

compared to the threshold. When the edge signal exceeds the threshold,

then a logical signal is generated.

SYNC AND TIMING

The second circuit th at has been designed and is ready for build is the sync

and timing section. The sync and timing circuitry must strip video sync ~ut

of the incoming video and then generate appropriate logic signals to be

associated with specific time slots within the video. The sync and timing

block diagram is shown in Figure 13.

The output of the sync separator is a logic signal that contains the composite

sync (CSYNCD). It is slightly delayed relative to the incoming video. The

composite sync signal feeds both a horizont al and a vertical reset logic

54 - ;
-
-

-

-

-

~
-z; -

!

~ rt~ ~jTL~i~i1JF]
(‘4

iç~
La La

I

:

--
- - -

:
~ft:~H~jy ~j

-~ ~~*~~~~~~ _~~_ ‘~~~~
. I

section. The reset logic sets the respective counters to zero at the start

of a frame or at the start of the line.

The number of counts for both the horizontal and vertical timing is deter-

mined by the line rate set logic. The line rate set logic is implemented by

a PROM which contains data for both 875 and 525 line systems. The master

clock for the counters is the 512 clock. This continuous clock frequency

contains 512 clock pulses per active horizontal line time, resulting in

512 addresses per horizontal line.

A second horizontal counter counts 455 clock pulses per horizontal line

time. The 455 clock is required for the Fairchild 321A CCD line delays

used in the image enhancement, edge filter, and background filter.

The outputs from the vertical counter are five logic signals assoc iated with

the vertical format of the data. These vertical timer signals are shown in

Figure 14. These signals are vertical blanking (VBLNK), vertical equali-

zation gate (VEQU), vertical serrat ion gate (VSEIO, vertical drive (VDRIVE),

and index. The outputs from the horizontal counter are shown in Figure 15.

These signals are horizontal blanking (HBLNK), horizontal drive (HDRIVE),

horizontal equalization gate (HEQU), horizontal serration gate (HSER), and

horizontal sync (HSYNC). The vertical and horizontal signals are combined

to give composite sync signals which are in synchroniz ation with the video.

The composite signals associated with a TV frame are shown in Figure 16.

Associated with each horizontal line are signals which are used in the

adaptive thre shold. Since they are used in several locations within the

autoscreener, they are derived on the sync and timing board. These

56
-

-

-

-

- —,——- -- — - --—-— -,~~~----—-.——-——— -

signals, shown in Figure 15, are the end of line interrupt (EOLINT) used

to interrupt CPU 1 to allow first level features to transfer to Memory 1,

horizontal sample/hold 1 (HSMPL1) used to sample the line integrator

output, horizontal clear (HCLEAR) used to clear the line integrator, and
horizontal sample/hold 2 (HSMPL2) used to determine the filter threshold

values.

The sync and timing board also outputs a continuous clock along with the

gated version. The sync and timing board has independent oscillators

for the 875 and 525 line systems.

VBLNK 33H or 21H

VE QU 3H
I 3H 1__

311
F

VSER 311 I
VDR IV E 911 J .

~
J-
~

INDEX 1 CLOCK PULSE/FRAM E

• Figure 14. Vertical Timing

-
~~ :~‘

~ ~~~~ : ‘

- -
- - -

_ (4 _ _• _ - --

C)

C)
(/2

0

0

0
U) U)

U)

‘I W 0 ~~ ~~ CU
I • o >. c- -~ .~~ -Jz — ~ z ...~ 0- U) CU

_I >.. _J It)
• C) UJ Ifl LU 0 V) C.) (i~ ~~ U)

~~ = 1/) LU X
=

H
I 58

______________________ -__

k - - -
-

- -

It)

_

59

1

--~

~~~~ -- 
~~~~~~~~~~~~~~~~ ? ___ ___ 

-

r ’ ,
~V’~W~—’4- ~i-~ ~

SECTION V

SYSTEM HARDWARE SPECIFICATION FOR PATS

This specification gives information on how various functions in the PATS

hardware will operate . It does not describe each signal that is derived on

a board but informs the designer which inputs and outputs can be expected

for each individual module. This specification does not include the image

enhancement portion of PATS.

VIDEO INPUT

The standard video input is an 875-line, 60 fields/second, 1-volt peak

video signal. There is a total of 809 active scan lines with 66 scan line s

for vertical retrace . The total horizontal scan time is 38. 09 ~sec of

which 31.09 ~sec are active and 7 ~sec are retrace. The input ib from a

common module FLIR supplied by NV&EOL. Because of the resolution

of the FLIR, a single video field (1/60 second) will be processed by the

hardware.

The PATS target screener will also accept the following video inputs:

• 525-line standard TV video, single field (240 active scan lines,

each 63. 5 i.i sec long, consisting of 53. 34 active and 10. 16 blanking)

• 525-line standard TV video, full frame 2:1 inte rlaced format

(480 active scan lines)

60

-4

PATS HARDWARE

The PATS hardware consists of seven basic functions or modules shown in

Figure 17. These modules will be broken up into several submodules and

discussed in greater detail later. The main modules to be di scussed are:

1. Autothreshold--Accepts a video input and automatically determines

the edge and bright logic signals.

2. Interval Generation- -Logically combines and validates the edge

and bright signal generated by the autothre shold and generates an

interval across a potential target.

3. First Level Features--Generates the featu res that are directly

transferred to a processing system.

4. Computer System 1- -The main processing computer consisting of

a 16-bit , 2901-based CPU, 24 K x 16 memory, and a multiplier/

accumulator. Its function is to do bin or object matching, gene r-

at ion of addit ional fe atures, and recognition.

5. Computer System 2--Provides for diagnostic capability as well as

interframe analysis and symbol generation software .

6. Intensity Data- -Provides for real-time digitization of the video

data at 512 samples/horizontal line. Its maximum size is 512 x

512 x 8 bits.

~~~~~~~~
-

~~~~
- - - - -

-
~~~~ ~~~W 1 - ~~~~

’
~~~~~~~

’
I, S ••4 /•

I-

w

~~ ‘I,

z

— —~~uJ~~~~

CD0 U) (a

,e.1

I ——
(I) I-

uJ~~~~
~~~~0

CD

I _

62

•- 
- ~~~~~~~~~~~~~~~~~~~~~ ~~l - -

~ ‘: ~~~~~~



7. Sym bol Generation- -A memory used for the generation of a specific

symbol associated with a target. At some specified location, the
symbol is displayed on the FLIR display.

For each of these seven functions, the type of inputs expected to be avail-
able , the outputs expected, signals that have to be derived on the board, and

the technology to be used will be described.

AUTOTH RESH OLD FUNCTION

The autothreshold section (Figure 18) is primarily an analog processing
section. This section derives the logic signals associated with an edge.
and hot and cold objects. This is done by comparing an analog signal with
an adaptive threshold. The result of the comparison give s a logic signal
stating whether the data are above or below the thre shold.

The autothreshold consists of two separate parts: the edge signal derivation
and the hot or cold signal derivation . The specific requ irements for each
of the se sections follow.

The edge signal is based upon the following algorithm:

Edge I(n-s-1, k) + I(n , k) + 2 1(n-1,k)
— I(n+ 1,k— 1) + 21(n, k— 1) — I (n—l , k — l )

where

n scan line number

k = position in scan line

1 = delay time

63

I 

_ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  

_ _ _ _ _

• _
~j~~*~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-:



P-I
01 Cl

C.)

z
uJ
CD
0
w

e
+ L3 i +~~~~ I

I- P-

-j

I~~ = ZQ. CD ~~
C
< =

/!\+_____i
T~

—±

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

v
w 0
I-

+ I

U, .4.)CD

-U,0

Z

.~~

64

_ _

/

The implementation is shown in Figure 19. The edge threshold is T
E:

T(E) = K (E) *VA R(N - 1)

VAR(N) = ~ * VAR (N-1) + (1-s) * 1/5L E Je J

where

K(E) = a constant

recursive filter constant

SL = scan line time

I e l = edge signal absolute value

The implementation for the edge threshold is shown in Figure 20. Table 6

gives expected available inputs, the type of output expected, some of the -

signals that will have to be derived on the board, and the type of technology
or special parts that will have to be used.

The second portion of the autothreshold is the adaptive bright signal gener-
ation (Figure 21). This primarily consists of a background filter and an
adaptive threshold.

The background estimator is a two-dimensional recursive low pass filter. $

This filter, shown in Figure 22, consists of a switch which controls the
input, a low pass filte r whose RC time constant is a few pixels, and the
recursive filter whose parameter ~ determines the number of scan line s

• it takes to build up to the background level.

4 . :

-C

65

—~~~
-

- - —-

- —TT:
~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

-
-
--



‘44
CD
C
‘4.4

U,
0-

0
‘4.4

0 444
.4..

+

444 Ud

U,-’

U)

+ +

‘-4
+

.~~

•
UJ

N
2 ”  $a-

1 
66

_ _ _ _ _ _ _ _  -4



U,

U,

= =

-a 0
o
U,

-a
U, 0

U,
U. I-

U, U, C)
+ +

I
J4

0
U, c~l
a

S.

F-

• “a
~~ _4

CD 
~~~ a

U’

• U,
U’ 4 CD

a
U — U,

• -

- ‘
- - i-S.

67

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 

, J-_ :-

TABLE 6. EDGE AND EDGE THRESHOLD DERIVATION

Inputs:

1. Video--525 or 875 with or 5. Sam ple/hold at end of l ine - -T TL
without sync 6. Sample/hold afte r end of line - -TTL

2. Composite blanking - -TTL 7. Clear integrator--TTL
3. Horizontal blanking- -TTL
4. Clock--45 5/horizontal line

ungated- -TTL

Outputs:

TTL- -edge

De rived in Hardware:

1. Edge--

• Based upon three horizontal lines
• Horizontal component only
• Expandable to include vertical component

2. Edge threshold- -based upon previou s edge scan line ave rages.

3. Analog edge should be 5 MHz low pass fi l tered before the th re shold
is derived.

4. Scan line integrator shall be switchable for either 525 or 875
line time.

Technology:

CCD32 1A3 will be used for hori zontal scan line delay , operating in
multiplexed mode giving 910 samples/scan line.

68 -

.,- -ç ,>

-

.
~~

/\
I- L-I_

~~
4

L

69

_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ -

-~~~
-—-‘

~~~~~~~~~~~~~~~~~~~

-
-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

- 
T TT.



~~~~~ L I 1 ~ A Y~~~~~~~~~

r — LOW PASS Lo-- p
~ss

I _ — I I FILTER ri t iup ACROSS O~ CKr.PnIJFI~A CROSs sc~~ • sc~~ ~~ r~ ’T” rT r
IUPUT L...~ ~~

LINE OTR E ET T ON

FR(W4 PREVIOUS
SCAN LINE

Figu re 22. Background Estimator

The switch is controlled by the previous line inte rval which has been stored

by the interval generation module. The switch precludes target-like data

from appearing in the background estimate. The results of video without

the switch are shown in Figure 23.

The bright threshold derivation is shown in Figure 21. It is very nearly the
same as the edge threshold except that there are separate multipliers for $

the hot and cold thresholds.

Table 7 pre sents the specific requirements for use with the adaptive bright

threshold. For both the edge and bright, Figure 24 presents the relative

timing for use on the autothreshold.

70

__________________________ - — --—~~-

-
—~~~~ —-

1~~~~~~~~~

_•••__

~

_1

1

PO EVIOI ’S LINE

I NPUT

I OIITP IJT OF
I LOW PASS FILTER

ALONO SC. AN LINE

$ *

TURN T IIR!~ O(JTPIJ T WITH OUTSW! H C) - H SL”ITC H

Figure 23. Background Filte r and Switch Rationale

TABLE 7. ADAPTIVE BRIGH T DERIVATION

Input:

• 1 volt PP. video 525 line or 875 • Previou s line interval
• Composite blanking TTL • Sample/hold at end of l in e - -TTL
• h ori zontal blanking TTL • Sample/hold afte r end of l in e--TT L
• Clock 4 55/horizontal line t ime • Clear integrator- -TTL

Ou tput:

• Bin ary hot- -equal to logir “one ” when data are above the hot threshold
• P - m ary cold--equal to logic “one ” when data are below cold threshold

l)c r ived i n Hardware:

1. Bright threshold- -based U~~Ofl previou s scan line ave rages of intensi ty-
background.

2. I ntensity -background analog data should be 5) . I I I z low pass fi l te red
befo re the threshold is derived.

3. Scan line integration shall be switchable.

Technology :

CCD32 1A3 will be used as part of the recursive fi lt er .

71

i t
_ _ _ _ _ _ _ _ _ _ _ _ _ __ _- -

~-rr ~~~~~~- ’ ’
- -

-
‘ ‘ - -

-— - -— 0~
-- - - . —~~~~ ____________

4 ~~~

I
~~tc ~~

1

_ _ _ _

72

_ _

- ~~~~

--

~~

- -

~~~~~~~~~ 
--;:~~~~~~~~~~~~ -~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



INTERVAL GENERATION

The interval generation (Figu re 25) is the logical combining of edge and

bright information that determines the regions of possible targets. It is in

synchronization with a master digital clock.

In the start/stop criteria (Figure 26), a potentially bright interval is filtered

by an M or N criteria (M = 4; N = 5). If there are M of N brights, the inter-

val is turned on. Note that delay lines must be provided to give prope r
phasing of the edge and bright signals. Part of the phasing diffe rence

comes from the analog processing and part is inherent in the start/stop
criteria.

The edge data must also be filtered by a set of M of N (M = 3, N = 5) require-

ments. In the edge criteria, we have a valid edge if any one of the three

adjacent lines has a good edge or if three adjacent lines each have an edge

associated with three pixels (0, +1) of the ~ int being considered. This is
shown in the bottom half of Figure 26.

The validation crite ria requires that an interval be declared valid if any

- .  ‘if the following three conditions occur:

1. An edge occurs at the start of a bright.

j . ~n ,~~s occurs at the end of a bright.

- - 
~ ii -.~g’ -

~~~ -un at both the start and end of a bright.

~ -,-,pvi~~~d ton conditions 1 and 2. If both condit ions 1 and 2

-. • •
~~ 44 ‘ p4’ 1St.

INTERVAL

CLOCK

EDGE
START/STOP VALIDATION

CRITERIA CRITERIA GOOD

HOT

COLD

Figure 25. Interval Generation

The interval data that are stored for controlling the switch in the background

estimator must only be valid interval data.

An interval will also be declared invalid if the interval width exceeds 32. *

A bit will be set indicating that the width has exceeded 32. The width count

will then indicate by how much it has exceeded 32 up to a maximum of 32.

This states that we can declare an interval between 32 arid 63 as invalid and

still have the correct count. However, if the interval exceeds 63, the in-

valid interval bit must still remain set and the width count shall be set to

zero.

*The total width count for a TV line Is 512. Thus, the maximum interval

is 1/16 of a TV line.

74

_ _ _ _ _ _ _ _
_ _ _ _ _ _ _

- - ,- - -

_

I

Table 8 presents the input and output requirements for the valid inte rval
generation. These data will be developed in conjunction with the first level
features since they contain the counters for the features and multiplexers

for the data.

TABLE 8. INTE RVAL GENE RATION

Input:

• Edge--TTL
• Hot--TTL
• Cold- -TTL
• Clock--TTL, continuous, rate = 512 pulses/scan line
• Horizontal blanking- -TTL

out put:
1. Valid interval data
2. Valid interval data delayed by one line
3. Bit indicating edge at start of bright
4. Bit indicating edge at end of bright
5. Valid interval pulse at end of valid interval

Derived in Hardware:
1. Proper phasing of edge and bright signal

2. Comparison and ORing to provide proper M of N start/stop criteria

3. Delay to include all of bright after start/stop declares that data
meet M of N requirements

4. Pulse to exclude first 10 scan lines of image

5. Pulse to exclude first and last few pixels of each scan line

Technology:

TRW 256-bit shift registers used for 1/2H scan line digital delay

76

-

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~— —~ — — — ‘ ‘ ,o’ t4~.



FIRST LEVEL FEATURES

Associated with each of the good or valid intervals are several features
that contribute to the detection and recognition of an object. These are

known as the first level features.

The valid interval pulse must be counted for each scan line. If the number

of valid intervals exceeds 16, a bit shall be set and no more data shall be

allowed to transfer for that scan line.

Three 16-bit words are generated or available as part of the first level

features. With least significant bits first, there are:

Word i

Width 6

X Position 9

Hot/Cold (H/C) 1

Word 2

Background Estimate 8

Sum of Intensity 8

Word 3

Bright Count 6
Spare 6
Edge at Start 1
Edge at End 1

H
1

I, 

- ‘



In Figure 27 , the first level feature organization is shown. For word 1,

the width count is a count of the width of an interval. It must be counted

even though it may later be declared an invalid interval because there are

no edges. The position is the true position of the start position of the

interval in the scan line, The H/C bit indicates whether the data are above

or below the background.

Word 2 is described in the intensity data description. The data must be

latched at the end of an interval, however, so more data can be accumulated.

Word 3 contains the count of the number of brights during an interval. It
will always be less than or equal to the width count. Also in word 3 is the
edge count, which is the number of edges during the interval and the associ-
ated bits indicating the location of edges relative to bright.

Table 9 presents information on the first level fe ature generation. Note
also that this requires interfacing with the interval generation, CPU 1, and

the intensity data.

INTENSITY DATA

The intensity data consist of two separate digitizations. These are the
background fe atu re (Figure 28) and the video intensity (Figure 29) . The
background is an 8-bit digitization of the analog background estimate taken
at the start of an interval. At the start of an interval, a fast sample/hold
is initiated and then converted within 325 nsec. This becomes the back-
ground estimate which goes to the first level features.

78

___________________ -- - - - 
~~~~~~ - — —a- - -.- - ~~~~~~~~~~~ - —


-% 01 d

: — .. -
~±~

[
~
J]

I
F~i

_ _ _ -

L!~~L~ 3iJ

I

H
_ _ _ _ _ _ _

79

_ _ _ _ _ _ _ _ _ _ _

-
- - - _ _ _ _- - --~~~-— —

—

~~_
___j l ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

- ~ -: ~~- - , ~~~
-- -

~~~~~~~~~~~~ 
- 

— - -~



TABLE 9. FIRST LEVEL FEATURES

Inputs:

• Good or valid data pulse--TTL
• Edge- -TTL
• Edge at start bit- -TTL
• Hot bright- -TTL
• Cold bright- -TTL
• Interval- -TTL
• Background estimate (8)- -TTL
• Sum of intensity (8)- ~-TTL
• Hori zontal blanking- -TTL
• Continuous clock (512/scan line)--TTL

Outputs:

• 16-bit tn -state buffered lines 16 TTL

• Width counter 6 TTL
• Number of intervals 4 TTL
• Number of good intervals/bit 1 TTL
• End of interval pulse 1 TTL

Derived:

1. Relative X position
2. Delay for each signal as appropriate to be counted in

synch ronization
3. End of scan line interrupt

Technology:

Low-power Schottky 16MHz

80

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ r 
- 

- - — a-~~~,—- _J. ~~~~~ ~~~~
—

~~~~~~~~~~~~~~ ~~~
- ,-

BAC KGROUND VID EO J

1

S/ H um~
j

A/D } 8
,,
/ ~~ ~~~ ND

STAR T OF INTERVAL

Figure 28. Background Feature

The video intensity data consist of a high speed A/D conversion (62 nsec

for 875 line), a h igh speed 12-bit adde r, and an intensity memory. The

A/ D is on for the enti re field and all data are digitized and stored. There

are a total of 512 samples per scan line with 6 bits of intensity. The A/D

converter is an 8-bit converter but only the 6 MSB are used in the appli-

cation. Since the data maximum value is 26 and the maximum interval

length is 2~ , 11 bits in the adde r would be sufficient . It is anticipated that

4-bit summing modules would be used and hence the 12 bits. At the end

of the interval, the 12-bit sum is latched and transferred to the first level

features. The latch is cleared after the data have been transferred.

The intensity data to be stored in Memory 2 are changing approximately

every 65 nsec. In order for memory to accept this fast rate, a scheme

must be developed which would allow the memory to be low power and yet

81

—

— - -i-I-- - - ‘•i~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~ ‘ - - —
~~~

-
~~ - 

-‘
~ ~—

‘-.
~~~~ - 1~


U

~~

I•4 40

1* * I

4,
--I
U2

_ _ _

.2
4

4

—

C)

.~~

L~’1
82

~~~ ~~~~~~
__1



be randomly accessible. Such a scheme is shown in Figure 30. A single

bit plane is implemented with shift registers on the input and output.

Average random access time from CPU 1 should be around ~00 nsec. The

scheme pre sented allows for eight values to be available with a cycle time

of about 375 nsec. One only has to give a starting address and then an

address increment eight larger to get the next eight values, etc.

Table 10 gives the background requ irements, and Table 11 presents the
video intensity requirements. Memory 2 requirements are shown in

Table 12. All interact to provide the intensity data.

TABLE 10. INTENSITY DATA- -BACKGROUND

Inputs:

• Interval- -TTL
• Continuous clock- -TTL
• Background estimate-analog- -O to 1 V

Output:

• 8-bit background estimate

Derived within:

1. Sample/Hold at start of interval
2. Conversion complete

Technology:

High speedAlD--300 neec

I
83

~~~ - _ - - -~
_ ,
~~- _

~~~~~ 
—

-- i,  - 
-

~~~~~~


40
+
z
40

i
_ _ _ _ _ _

Hi~
(
~iI1~

I
~~ 40 — ~~ 40 •—

-4

40

0
•

040 — r.~
I., ~ 40 40 I~-

_ _ _ _ _ _ _ _ _ _
I

40

84

TABLE 11. INTENSITY DATA --AID AND SUM OF INTENSITY

Input:

• TV vtdeo- -Analog 0 to 1 V
• Hori zontal blanking - -TTL
• Composite blanking- -TTL
• Continuous clock--TTL

Outpu t:

• 6-bit intens ity data- -TTL
• 12-bit sum of intensity over inte rval - -TTL (8 bits to FLF)

De rived:

• Conve rt dat a at clock rate pulse
• End of summation

Technology:

• A / D - -TR ~V 8-bit video converter

-
• Low-powe r Schottky

TABLE 12. INTENSIT Y DATA - -MEMORY 2

Input:

• 6-bit intensity data--TTL
• Continuous clock- -TTL
• h orizon t al blanking - -TTL

Output:

• 6-bit, 512 x 256 video data stored in imag e format

Derived within:

• X address
• Y address
• Interface to CPU 1

- f Do with respective CPL
• Interface to CPL 2)

Technology:

• • Fujitsu Dynamic RAMs , 16 K x 1

Notes:

Expandable to 512 x 512 x 8 bits

h.- 85

U— — -

~~~~~ !~~
-- 

~~ - -~~ -



r

COMPUTER SYSTEM 1

Compute r system 1 shown in Figure 31 must accept the inputs from the

first level features’ portion at the end of each interval. It must also access

the intensity memory (Memory 2), be able to use a paraLlel I/O mult iplier/

accumulator, and inte rface to CPU 2.

At the end of each interval, an end of interval interrupt will occur which

will tell the hardware that is part of CPU 1 to load 3- to 16-bit words into

FIFO 1. The FIFO will have approximately 325 nsec to accept the three

words before a new set of data might be available. At the end of each scan

line, the number of intervals for that scan line will be available so that
DMA transfer of the data can occur. Data from FIFO 1 to FIFO 2 will
occur and then data will be transferred to Memory 1. The CPU will wait
for the DMA transfer to occur. The Memory 1 interface is shown in

Figure 32.

Memory 2 will be accessed typically after all the data in Memory 1 have
been preprocessed. Generally Memory 2 will be used as input to the
multiplier/accumulator for moment calculations.

The interface between CPU 1 and CPU 2 will handle DMA access to Memory

1 and Memory 2 and might possibly handle the microprogram memory

transfe r during development of the software.

Table 13 gives some of the requirements of CPU 1 and its associated

memories.

86 
f-
.
.

______________________________________ _________ -— ~~————-----—-—— — —- - —~~~~~~ .------— — __

~
___ ,_ _

~
-.._-a______ 

~~~~~ 

ft 550 HONEYWELL INC MIMCAPOUS MztlIi srstv.s A1C RESEARCH —.rc F/s 17/sPROTOTYPE AUTOMATIC TARGET SCREENER.(U)
SEP 75 0 £ SCt.AND. P N NARENORA, R C FITCH DAAK 7O— 7 7—C—02$eUNCLASSIFIED 7551CM—a

P41_

I

I

__ a

‘)
I Ci.~~~ w
I ~~ a

I I
;±f

~~ II ~~~~~~~ I
V I I

—~~~~~

a — I ~

-10

9
—1

~ j_F
_ _

— !~ I
_ _ _ _-

cc~~~~~~
~

1~
_ _ _ _ _ _

I
_ _

.~~~
,

• 10~~~ I
K ~~~~~~~~~~

~~~~~~ I
L
JT~

t
_H

-
1 1... ~~.(D ~~~~~S-

a!

87 

-

~~~~~~~ 

,, -

~~

—

‘U

‘U
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—

0

I- —
44.4

z

_ _  I

kd4”lø- I
0

p 0
_ _ _ _ _ _ _ _  ‘-4 

4

_ _ _ _  _ _ _ _  0
E

I $4

~~~~~

I,

iI~ ii r
.4

88

11

~TiL -
~ -~~~~- __

‘.

~~

-

__
.

TABLE 13. CPU 1

Inputs:

• 3- to 6-bit word at max imum rate of occurrence every 325 nsec
(eve ry 5 clock periods) from first level feature s

• Intensity data 6 to 8 bits in magnitu de

Outputs:

• Must transfer position and target classification data to CPU 2

Processing:

1. Access Memory 2 with average cycle time of 200 nsec
2. Moment calculation
3. Use Memory 1 for scratch pad

Technology:

• Bipolar microprocessor- -AMD2 900 family
• Multiplier- -TRW

Interfaces:

• Prov ide control for FIFO based upon an end of interv al interrupt
and an end of scan line interrupt

• Provide handshake to Memory 2

• Allow for DMA access to Memory 1 and Memory 2

• Provide interface to multiplier

Memory 1 Size:

8 K x 18 for first level feature
8 K x 16 for scratch pad and secondary feature
8 K x 16 for k-nearest neighbor prototype

24 K x 16 bits

:~r
89

CPU 2

The CPU 2 with symbol generation shown in Figure 33 is a commercially

available 16-bit computer system. Its function is to do the interframe

analysis, generation of symbol softwa re, and training data gathering and

diagnosis.

It is anticipated that this computer will be a DEC LSI 11/2 so that it will fit

inside the box chosen for the rest of the hardware. The inputs to the oper-

ational software will be position and target classification. The output will

be position information and data for loading symbol memory. The symbol

memory will be loaded during vertical retrace. The parts to be included

for the CPU 2 are:

1 KD11-HC 11/2 with 16 K Memory 4

2 KEV11 Fixed and Floating Point--Instruction Set

3 MRV1 1 -AA 4 K PROM / ROM Board- - Instruction Set

4 DLV11 Serial I/O Port

5 REV11-C Refresh Bootstrap Diagnostic Board

6 DCK11-AC LSI Interface Kit (2)

7 R928 1-BB Backplane/Card Guide--8 slots

8 RXV 1 1-BA Dual Floppy ControUer

9 LSI2O-HE Decwriter (Keyboard/Printer) with cable

10 QJO13-CY RT-11 Software

11 QJ813-CY Fortran IV Softwa re

12 QJV11-CB PROM Formatter Software

• •

/ •-/44* ’ 4 a .~ -

(

I ~~~~ II — ~i II ~ i I
I ‘~~ I

0

+

+

$4

z
0
0

C,

0

C’)
C’,

I
91

_ _ _ _ _ _ _ _ _ _ _ _ _

1
•

~~~~~—~~~
_
s

_
~~ ~~~~~~~~~~~~~~~~~~~~~ 

—I-



Symbol Generation

The symbol generation consists of a 256 x 256 1-bit plane for the storage of
the symbol. This makes symbol generation simply a matter of turning a
set of bits on or off. The proposed scheme for the symbol generation is
shown in Figure 34. Table 14 below gives the I/O requirements.

TABLE 14. SYMBOL GENERATION

Requirements:

1. Must interface to DEC LSI 11/2 computer
2. Memory storage to be on DEC interface board

Inputs:

• Y Position (line number)- -TTL
• Cont inuous clock--512 pulses/scan line
• Composite blanking - -TTL

Output:

1. Serial data stream whose horizontal resolution is 256 values
per horizontal scan line

2. Vertical shall remain on for two scan lines.
3. Data should be repeated for second field.
4. Data to replace incoming video

Derived:

• X position data
• Refre sh or change memory during vertical retrace

92



4 0
I ‘U0

I I I
93 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


SYSTEM TIMING

Even though it is not brought out as a function, the system timing shown in

Figure 35 is necessary as input to many of the boards used in PATS.

Primarily, the timing board will consist of a sync separator and gated

oscillator which give the appropriate number of clock pulses for the CCDs

anji give appropriate pulse widths indicating the number of clock pulses

counted out since the beginning of the scan line. Table 15 lists the sync

or master timing requirements.

TABLE 15. SYNC AND TIMING

I

Inputs :

• Composite video

Outputs:

• Composite blanking- -TTL . 455 pulse--TTL
• Horiz ontal blanking- -TTL . Sample /Hold at end of line - -TTL
• Vertical blanking ’-TTL • Sample/Hold after end of line- -TTL
• CCD clock- -TTL • Clear integrator- -TT L
• Digital clock- -TTL • 455 gated clock- -TTL
• 512 pulse--TTL • 512 gated clock--TTL

Derived within:

• Continuous digital clock whose frequency is 512 clock pulses per
horizontal active scan line

• Continuous digital clock whose frequency is 455 clock pulses per
horizontal active scan line

. 4

94

•
-.

~
-‘.

~~
--

~~~~~~~~~
— 

~~~~~~~~ 

—

‘UI.-

z0 0
C.’

—~~ -‘ C.,
C.,0 1*0

-I
— I

I I-
C.~

0

Il)

•

~~~0 I
1’

U

95

___________________________ — 

~
—
,
•.; 

- 

~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
•- —‘~~~~~~

—.
~~

-—

~~~

—-
~~~

1 ~~~~~
“

~‘

MECHANICAL

The PATS should fit into 1 ATR large box. The box’s external dimensions

are approximately 10. 0 inches wide, 10. 4 inches high, and 19.4 inches deep.

CPU 2 will also fit into this chassis. The chassis is shown in Figure 36;

the layout of cards, power supply, and cooling are shown in Figure 37.

The card dimensions for all the cards except the CPU 2 are approximately

9 inches x 61 inches. The card outline is shown in Figure 38.

POWE R

Switching power supplies will be used for the digital hardware and CPU 2.

The analog power requirements are not yet well enough define d to determine

the linear power supplies.

Power which should be available is as follows:

+5V 35A

-5V 4A

+15V 1OA

-15S’ 1OA

.

96
I

C)

I
I ~~~~~~~~ ~~~~~~I ~~~~~~~~~~~~~~~~~ l.~-j

•
I ___ -‘ip~ :i 111—4 -~.‘ I ~~~~~~~~~~ It II ~~~ ~~~~ L

~ ‘ 1 J t_~~J~~.1 ~~~~~~~~ ~~~ I—. I— 0

7 o ~~e~ o
I

_ _

I
H

97

4,)

U

r

0
-4

S3H3IIMS 13NVd .LNO~~

U,
0

L)

0 0c’J

0
(5

In
a’ Co
.4-

0” (..)
• cO

C’)

~~~ 
1-4

w a .  ...a

SNOIJ.33NN03 ~V3~

98

• • 
• ‘~~ T’~~~~i 

‘
~~~~~~ 

‘
~~~~~~~

— —



J L 0,

• • i~c

____ — —— — — — — — —— — c •~—— — — —
- I’)— — —— —— —— — — — — — — —— p — —43 — — —— — — — —— — 9 ‘4— I — — — — — — —— —— — — —— — — t

0

~4 — c%a—— — —— — — — — ——— —— —— —— — —— —— —— — — I— —— —— —— — —— — —— —— — — —— — —
— —— — —— —— — — —— — — — —• I • •  1 I 4

• I I ii I S I I I
• I I Fl I U 11 I I

• • I I I I 111 I I I

1~~ 

I ‘ 

I
ID ~

. ‘4, C” — ).~

99

~~•eI~- -—• ----• - -- ~-z~~~~



‘4.

(

SECTION VI

PLANS FOR THE NEXT REPORTING PERIOD

During the next three-month reporting period, we plan to complete the

design of CPU 1 and Memory 1. We will also begin microprogram coding

for CPU 1. Detailed design of the feature extraction circuitry for Memory

2 will be completed and all boards will be fabricated as parts become

available. With the exception of the symbol generation board, all design

tasks should be essentially completed during the reporting period .

0

4.

I

4

100

— - — 
________ • ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

—

_______________________________________________ __________ _______________ 
1 

___________


